Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Am J Transl Res ; 11(6): 3301-3316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312345

RESUMO

PURPOSE: Tong Sheng tablets (TSTs) have long been used for treating cerebral ischemic reperfusion injury (CIRI) in clinic, but the underlying mechanism remains unknown. Therefore, in this study, TSTs were evaluated systematically using chemical analysis, network pharmacology and classical pharmacology. METHODS: The first part was TSTs quality control including TSTs fingerprint establishment and chemicals identification. In the second part, network pharmacology analysis and bioinformatics were combined to construct a compound-target-disease network, which can screen out key targets or pathways, revealing complex molecule mechanism of TSTs. The last part was experiment verification. Classical pharmacology of TSTs was investigated in vivo to verify the results of network pharmacology. RESULTS: (1) Fingerprints of TSTs were established, and 11 characteristic peaks were identified using HPLC. (2) Network pharmacology and bioinformatics suggested that the protection of TSTs in treating CIRI might be related to regulation of oxidative stress, inflammation and apoptosis, and some key molecules such as Nrf2, IL-1ß, TNF, Bcl-2 and Cyt-C involved in the pathways. (3) TSTs significantly improved neurologic behavior scores, decreased the areas of ischemic necrosis and neuronal necrosis, and increased Nissl body counts. Besides, TSTs significantly decreased pro-inflammatory cytokine (IL-1ß, TNF-α) and pro-oxidative product levels (LPO, MDA) and increased anti-oxidative product levels (NO, SOD). TSTs downregulated the protein expressions of Nrf2 and HO-1. Meanwhile, TSTs reduced apoptotic cell counts, downregulated the protein expressions of Cyt-C and Bax, and upregulated the protein expression of Bcl-2. In terms of autophagy, TSTs enhanced LC-3B protein expression. CONCLUSION: The present results illustrated that TSTs effectively alleviated CIRI, and the underlying mechanism might be associated with multiple molecular pathways. Herein, we established a primary pattern for studying Chinese herbal compounds and provided basic guidance for future investigation.

2.
J Biomed Nanotechnol ; 14(7): 1252-1262, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29944099

RESUMO

The blood-brain barrier (BBB) poses a challenge for the treatment of cerebrovascular diseases including cerebral ischemia-reperfusion injury, Parkinson's syndrome, and cerebral tumors. Nanotechnology has developed as a promising strategy for drug delivery applications to the brain, especially liposomes (Lps) that have shown an intrinsic ability to cross the BBB. Angiopep-2 (ANG), a ligand for low-density lipoprotein receptor-related protein-1 (LRP1), is a good prospect for use as a targeting ligand for brain delivery using Lps. It was also reported that Polysorbate 80 (Tween 80, T80) plays a special role in brain targeting. Moreover, the nasal drug delivery method has attracted increased attention with its brain targeting capability in the clinical treatment of cerebrovascular diseases. The aim of this work was to evaluate the capability of Angiopep-conjugated Polysorbate 80-Coated Liposomes in the delivery of cyclovirobuxine D across the BBB in vitro and in vivo. For this purpose, we first synthesized DSPE-PEG2000-Angiopep-2 then cyclovirobuxine D was encapsulated in Angiopep-conjugated Polysorbate 80-Coated Liposomes (T80-An2-CVB-D-Lps) prepared by thin film evaporation and an ultrasonic technique. Formulations were characterized in terms of encapsulation efficiency, transmission electron microscope (TEM) morphology, size distribution, and zeta potential. Angiopep-conjugated Polysorbate 80-Coated Liposomes enhanced in vitro BBB transport of CVB-D compared to the nontargeted liposomes and the CVB-D solution in the BBB model consisting of brain microvascular endothelial (bEnd.3) cells. To evaluate the brain targeting of T80-An2-CVB-D-Lps in vivo, microdialysis samples were collected from the striatum and blood simultaneously. Rats were dosed with brain-targeting liposomes, CVB-D liposomes and CVB-D solution by intranasal administration and with brain-targeting liposomes by intravenous injection. The results showed that T80-An2-CVB-D-Lps were spherical, small (approximately 80 nm), homogeneously dispersed, negatively charged and possessed a high encapsulation efficiency. T80-An2-CVB-D-Lps crossed the BBB model better than the other treatments did. In addition, in a pharmacodynamic study, there was a higher AUC in the brain after T80-An2-CVB-D-Lps by intranasal administration. In conclusion, T80-An2-Lps can enhance the BBB permeability and improve the transport of CVB-D to the brain. This coadministration strategy can be utilized to enhance the brain accumulation in other cerebrovascular diseases.


Assuntos
Encéfalo , Administração Intranasal , Animais , Barreira Hematoencefálica , Medicamentos de Ervas Chinesas , Lipossomos , Polissorbatos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...